
CMPU 334 – Operating Systems
Jason Waterman

The Process Abstraction

How to Provide the Illusion of Many CPUs?

• Goal: run N processes at once even though there are M CPUs
• N >> M

• CPU virtualizing
• The OS can promote the illusion that many virtual CPUs exist

• One isolated machine for each program

• Timesharing
• Running one program, then stopping it and running another

• The potential cost is performance

• What are the benefits?
• Ease of use for the programmer

• Protection – program runs on a restricted machine

1/24/2023 CMPU 334 – Operating Systems 2

A Process

• A process is OS’s abstraction of a running program

• What constitutes a process?
• Memory (address space)

• Instructions

• Data

• Registers (state of the processor)
• General purpose registers

• Program counter (PC)

• Stack pointer (SP)

• I/O Information
• List of files a process currently has open

1/24/2023 CMPU 334 – Operating Systems 3

Process API

• These APIs are available on any modern OS
• Create

• Create a new process to run a program

• Destroy
• Halt a runaway process

• Wait
• Wait for a process to stop running

• Miscellaneous Control
• Suspend
• Resume

• Status
• Get some status information about a process
• How long it has been running
• What state is it in

1/24/2023 CMPU 334 – Operating Systems 4

Process Creation

1. Load a program code into memory,
the address space of the process
• Programs reside on a disk in an

executable format (e.g., ELF)

2. The program’s run-time stack is
allocated
• Stack is used for local variables, function

parameters, return address

• Initialize the stack with arguments
• argc and argv array of main() function

1/24/2023 CMPU 334 – Operating Systems 5

Process Creation (Cont.)

3. The program’s heap is created
• Used for explicitly requested

dynamically allocated data

• malloc(); free()

4. The OS does some other
initialization
• I/O setup (stdin, stdout, stderr)

5. Start the program running at the
entry point main()
• The OS transfers control of the CPU to

the newly-created process

1/24/2023 CMPU 334 – Operating Systems 6

Process States (simplified)

• A process can be in one of three
states
• Running

• A process is running on the CPU

• Ready
• A process is ready to run but for

some reason the OS has chosen not
to run it at this given moment

• Blocked
• A process has performed some kind

of operation that it is waiting on

• E.g., an disk request

1/24/2023 CMPU 334 – Operating Systems 7

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

Process Data Structures

• The OS has some key data structures that track various pieces of
information
• Process list

• Ready processes

• Blocked processes

• Current running process

• Register context
• A copy of all the registers for a process

• The Process Control Block (PCB)
• A structure that contains information about each process

1/24/2023 CMPU 334 – Operating Systems 8

Process Creation

• We talked about process creation in general terms

• Now let’s discuss process creation in UNIX systems
• fork() – Makes a copy of the currently running process

• exec() – Replaces a process with a different program

• wait() – Wait for a child process to finish

• Questions to think about
• What interfaces should the OS present for process creation and control?

• How should these interfaces be designed to enable ease of use as well as utility?

1/24/2023 CMPU 334 -- Operating Systems 9

The fork() System Call

• Create a new process
• The newly-created process has its own copy of the address space, registers, and PC

1/24/2023 CMPU 334 -- Operating Systems 10

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]){

printf("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)

printf("hello, I am parent of %d (pid:%d)\n",

rc, (int) getpid());

}

return 0;

}

p1.c

Calling fork() example (Cont.)

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

Result (Not deterministic)

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>

or

1/24/2023 CMPU 334 -- Operating Systems 11

The wait() System Call

• This system call won’t return until the child has run and exited

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

printf("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)

int wc = wait(NULL);

printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());

}

return 0;

}

p2.c

1/24/2023 CMPU 334 -- Operating Systems 12

The wait() System Call (Cont.)

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

Result (Deterministic)

1/24/2023 CMPU 334 -- Operating Systems 13

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

The exec() System Call

• Run a program
that is different
from the calling
program

int main(int argc, char *argv[]){

printf("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());

char *myargs[3];

myargs[0] = strdup("wc"); // program: "wc" (word count)

myargs[1] = strdup("p3.c"); // argument: file to count

myargs[2] = NULL; // marks end of array

execvp(myargs[0], myargs); // runs word count

printf("this shouldn’t print out");

} else { // parent goes down this path (main)

int wc = wait(NULL);

printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());

}

return 0;

}

p3.c

1/24/2023 CMPU 334 -- Operating Systems 14

Result

Motivating the API

• Why the odd interface for the simple act of creating a new process?

• Why are fork() and exec()separate functions?

• Necessary for building a UNIX shell
• It lets the shell run code after the call to fork() but before the call to exec()

• Can alter the environment of the about to be run program

• Can easily support things like redirection and pipes

1/24/2023 CMPU 334 -- Operating Systems 15

All of the above with redirection

int

main(int argc, char *argv[]){

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child: redirect standard output to a file

close(STDOUT_FILENO);

open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

// now exec "wc"...

char *myargs[3];

myargs[0] = strdup("wc"); // program: "wc" (word count)

myargs[1] = strdup("p4.c"); // argument: file to count

myargs[2] = NULL; // marks end of array

execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)

int wc = wait(NULL);

}

return 0;

}

p4.c

1/24/2023 CMPU 334 -- Operating Systems 16

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

Result

How to Efficiently Virtualize the CPU with Control?

• The OS needs to share the physical CPU by time sharing

• Issues
• Performance: How can we implement virtualization without adding excessive

overhead to the system?

• Control: How can we run processes efficiently while retaining control over the CPU?

1/24/2023 CMPU 334 -- Operating Systems 17

Just run the program directly on the CPU

Direct Execution

OS Program

1. Create entry for process list
2. Allocate memory for program
3. Load program into memory
4. Set up stack with argc / argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything and

thus would be “just a library”

1/24/2023 CMPU 334 -- Operating Systems 18

Problem 1: Restricted Operation

• What if a process wishes to perform some kind of restricted operation such
as …
• Issuing an I/O request to a disk

• Gaining access to more system resources such as CPU or memory

• Solution: Using protected control transfer
• User mode: Applications do not have full access to hardware resources

• Kernel mode: The OS has access to the full resources of the machine

1/24/2023 CMPU 334 -- Operating Systems 19

System Call

• Allow the kernel to carefully expose certain key pieces of functionality to
user program, such as …
• Accessing the file system
• Creating and destroying processes
• Communicating with other processes
• Allocating more memory

• Trap instruction
• Jump into the kernel
• Raise the privilege level to kernel mode

• Return-from-trap instruction
• Return into the calling user program
• Reduce the privilege level back to user mode

1/24/2023 CMPU 334 -- Operating Systems 20

Limited Direction Execution Protocol @Boot
OS @ boot
(kernel mode)

Hardware

initialize trap table
remember address of …

syscall handler

1/24/2023 CMPU 334 -- Operating Systems 21

Limited Direction Execution Protocol @Run
OS @ run (kernel mode) Hardware Program (user mode)

Run main()
…
Call system call
trap into OS

restore regs from kernel stack
move to user mode
jump to main

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from-trap

Free memory of process
Remove from process list

…
return from main
trap (via exit())

restore regs from kernel stack
move to user mode
jump to PC after trap

Handle trap
Do work of syscall

return-from-trap

save regs to kernel stack
move to kernel mode
jump to trap handler

1/24/2023 CMPU 334 -- Operating Systems 22

Problem 2: Switching Between Processes

• How can the OS regain control of the CPU so that it can switch between
processes?
• A cooperative Approach: Wait for system calls

• A Non-Cooperative Approach: The OS takes control

1/24/2023 CMPU 334 -- Operating Systems 23

A cooperative Approach: Wait for system calls

• Processes periodically give up the CPU by making system calls such as
yield

• The OS decides to run some other task

• Application also transfer control to the OS when they do something illegal
• Divide by zero

• Try to access memory that it shouldn’t be able to access

• Examples: early versions of the Macintosh OS, the old Xerox Alto system

1/24/2023 CMPU 334 -- Operating Systems 24

A process gets stuck in an infinite loop
→ Reboot the machine

A Non-Cooperative Approach: OS Takes Control

• A timer interrupt
• During the boot sequence, the OS start the timer

• The timer raise an interrupt every so many milliseconds

• When the interrupt is raised:
• The currently running process is halted

• Save enough of the state of the program

• A pre-configured interrupt handler in the OS runs

A timer interrupt gives OS the ability to
run again on a CPU

1/24/2023 CMPU 334 -- Operating Systems 25

Saving and Restoring Context

• Scheduler makes a decision:
• Whether to continue running the current process, or switch to a different one

• If the decision is made to switch, the OS executes a context switch

1/24/2023 CMPU 334 -- Operating Systems 26

Context Switch

• A low-level piece of assembly code
• Save a few register values for the current process onto its kernel stack

• General purpose registers

• PC

• Kernel stack pointer

• Restore a few register values for the soon-to-be-executing process from its kernel
stack

• Switch to the kernel stack for the soon-to-be-executing process

1/24/2023 CMPU 334 -- Operating Systems 27

Limited Direction Execution Protocol (Timer interrupt)
@Boot

1/24/2023 CMPU 334 -- Operating Systems 28

OS @ boot
(kernel mode)

Hardware

initialize trap table
remember address of …
syscall handler
timer handler

start interrupt timer

start timer
interrupt CPU in X ms

Limited Direction Execution Protocol (Timer interrupt) @Run

1/24/2023 CMPU 334 -- Operating Systems 29

OS @ run (kernel mode) Hardware Program (user mode)

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler for timer

Process A
…

Handle the trap
Call switch() routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)

return-from-trap (into B)

restore regs(B) from k-stack(B)
move to user mode
jump to B’s PC

Process B
…

Worried About Concurrency?

• What happens if, during interrupt or trap handling, another interrupt
occurs?

• OS handles these situations:
• Disable interrupts during interrupt processing

• Use a number of sophisticated locking schemes to protect concurrent access to
internal data structures

1/24/2023 CMPU 334 -- Operating Systems 30

Separating Policy and Mechanism

• Design paradigm
• Separate high-level policies from their low-level mechanisms

• Mechanism
• Answers the “how” question about a system

• How does the OS perform a context switch?

• Policy
• Answers the “which” question about a system

• Which process should the OS run right now?

• Allows for policies to change without having to rethink the underlying
mechanism
• Gives the system good modularity

1/24/2023 CMPU 334 -- Operating Systems 31

	Slide 1: The Process Abstraction
	Slide 2: How to Provide the Illusion of Many CPUs?
	Slide 3: A Process
	Slide 4: Process API
	Slide 5: Process Creation
	Slide 6: Process Creation (Cont.)
	Slide 7: Process States (simplified)
	Slide 8: Process Data Structures
	Slide 9: Process Creation
	Slide 10: The fork() System Call
	Slide 11: Calling fork() example (Cont.)
	Slide 12: The wait() System Call
	Slide 13: The wait() System Call (Cont.)
	Slide 14: The exec() System Call
	Slide 15: Motivating the API
	Slide 16: All of the above with redirection
	Slide 17: How to Efficiently Virtualize the CPU with Control?
	Slide 18: Direct Execution
	Slide 19: Problem 1: Restricted Operation
	Slide 20: System Call
	Slide 21: Limited Direction Execution Protocol @Boot
	Slide 22: Limited Direction Execution Protocol @Run
	Slide 23: Problem 2: Switching Between Processes
	Slide 24: A cooperative Approach: Wait for system calls
	Slide 25: A Non-Cooperative Approach: OS Takes Control
	Slide 26: Saving and Restoring Context
	Slide 27: Context Switch
	Slide 28: Limited Direction Execution Protocol (Timer interrupt) @Boot
	Slide 29: Limited Direction Execution Protocol (Timer interrupt) @Run
	Slide 30: Worried About Concurrency?
	Slide 31: Separating Policy and Mechanism

