Locks

CMPU 334 – Operating Systems
Jason Waterman
Locks: The Basic Idea

• Ensure that any **critical section** executes as if it were a **single atomic instruction**
 • An example: the canonical update of a shared variable

```c
balance = balance + 1;
```

• Add some code around the critical section

```c
1   lock_t mutex; // some globally-allocated lock ‘mutex’
2    ...
3    lock(&mutex);
4    balance = balance + 1;
5    unlock(&mutex);
```
Locks: The Basic Idea

• Lock object holds the state of the lock
 • available (or unlocked or free)
 • No thread holds the lock
 • acquired (or locked or held)
 • Exactly one thread holds the lock and presumably is in a critical section
The semantics of `lock()`

- **Try to** acquire the lock
- If no other thread holds the lock, the thread will **acquire** the lock
- **Enter** the **critical section**
 - This thread is said to be the owner of the lock
- Other threads are prevented from entering the critical section while the first thread holds the lock
 - Other threads will **block** on the call to lock, until the lock is released
 - If several threads are waiting on the lock, only one will get it when it is released
Pthread Locks - mutex

• The name that the POSIX library uses for a lock
 • Used to provide **mutual exclusion** between threads

```c
1   pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
2
3   Pthread_mutex_lock(&lock); // wrapper for pthread_mutex_lock()
4   balance = balance + 1;
5   Pthread_mutex_unlock(&lock);
```

• We may be using different locks to protect different variables → Increase concurrency (a more **fine-grained** approach)
Evaluating locks – Basic criteria

• **Mutual exclusion**
 • Does the lock work, preventing multiple threads from entering a **critical section**?

• **Fairness**
 • Does each thread contending for the lock get a fair shot at acquiring it once it is free? (starvation free)

• **Performance**
 • The time overheads added by using the lock
 • Locks must provide mutual exclusion at low cost

• Building a lock needs help from the **hardware** and the **OS**
Controlling Interrupts

• **Disable Interrupts** for critical sections
 • One of the earliest solutions used to provide mutual exclusion
 • Invented for *single-processor* systems

```c
1 void lock() {
2     DisableInterrupts();
3 }
4 void unlock() {
5     EnableInterrupts();
6 }
```

• Problems
 • Requires too much *trust* in applications
 • Greedy (or malicious) program could monopolize the processor
 • Does not work on *multiprocessors*
 • Code that masks or unmasks interrupts is executed *slowly* by modern CPUs
Why is hardware support needed?

- **First attempt**: Using a *flag* denoting whether the lock is held or not
 - The lock function below has problems

```c
typedef struct __lock_t { int flag; } lock_t;

void init(lock_t *mutex) {
    // 0 → lock is available, 1 → held
    mutex->flag = 0;
}

void lock(lock_t *mutex) {
    while (mutex->flag == 1) // TEST the flag
        ; // spin-wait (do nothing)
    mutex->flag = 1; // now SET it!
}

void unlock(lock_t *mutex) {
    mutex->flag = 0;
}
```
Why hardware support needed? (Cont.)

- **Problem 1**: No Mutual Exclusion (assume `flag=0` to begin)

<table>
<thead>
<tr>
<th>Thread1</th>
<th>Thread2</th>
</tr>
</thead>
<tbody>
<tr>
<td>call <code>lock()</code></td>
<td>call <code>lock()</code></td>
</tr>
<tr>
<td>while (mutex->flag == 1)</td>
<td>while (mutex->flag == 1)</td>
</tr>
<tr>
<td>interrupt: switch to Thread 2</td>
<td>interrupt: switch to Thread 2</td>
</tr>
<tr>
<td></td>
<td>mutex->flag = 1;</td>
</tr>
<tr>
<td></td>
<td>interrupt: switch to Thread 1</td>
</tr>
<tr>
<td>flag = 1; // set flag to 1 (too!)</td>
<td></td>
</tr>
</tbody>
</table>

- **Problem 2**: Spin-waiting wastes time waiting for another thread

- So, we need an atomic instruction supported by **hardware**
 - *test-and-set* instruction, also known as **atomic exchange**
Test And Set (Atomic Exchange)

• An instruction to support the creation of simple locks

```c
int TestAndSet(int *ptr, int new) {
    int old = *ptr; // fetch old value at ptr location in memory
    *ptr = new;     // store 'new' into ptr location in memory
    return old;     // return the old value
}
```

• `return (test) old value pointed to by the ptr`
• `Simultaneously update (set) said value to new`
• This sequence of operations is **performed atomically**
• x86_64:
 • `xchg rax, (mem)`
A Simple Spin Lock using test-and-set

```c
typedef struct __lock_t {
    int flag;
} lock_t;

void init(lock_t *lock) {
    // 0 indicates that lock is available
    // 1 that it is held
    lock->flag = 0;
}

void lock(lock_t *lock) {
    while (TestAndSet(&lock->flag, 1) == 1)
        ; // spin-wait
}

void unlock(lock_t *lock) {
    lock->flag = 0;
}
```

• **Note**: To work correctly on a single processor, it requires a preemptive scheduler
 • Why?
Evaluating Spin Locks

• **Correctness**: yes
 • The spin lock only allows a single thread to enter the critical section

• **Fairness**: no
 • Spin locks don’t provide any fairness guarantees
 • Indeed, a thread spinning may spin *forever*

• **Performance**:
 • For a single CPU, performance overheads can be quite *painful*
 • If the number of threads roughly equals the number of CPUs, spin locks work *reasonably well*
Compare-And-Swap

• Test whether the value at the address (ptr) is equal to expected
 • If so, update the memory location pointed to by ptr with the new value
 • In either case, return the actual value at that memory location
• x86_64
 • cmpxchg

```
1 int CompareAndSwap(int *ptr, int expected, int new) {
2     int actual = *ptr;
3     if (actual == expected)
4         *ptr = new;
5     return actual;
6 }
```

Compare-and-Swap hardware atomic instruction (C-style)

```
1 void lock(lock_t *lock) {
2     while (CompareAndSwap(&lock->flag, 0, 1) == 1)
3         ; // spin
4 }
```

Spin lock with compare-and-swap
Fetch-And-Add

- **Atomically increment** a value while returning the old value at a particular address

```c
int FetchAndAdd(int *ptr) {
    int old = *ptr;
    *ptr = old + 1;
    return old;
}
```

Fetch-And-Add Hardware atomic instruction (C-style)
Ticket Lock

- **Ticket lock** can be built with fetch-and add
 - Ensure progress for all threads → **fairness**

```c
typedef struct __lock_t {
    int ticket;
    int turn;
} lock_t;

void lock_init(lock_t *lock) {
    lock->ticket = 0;
    lock->turn = 0;
}

void lock(lock_t *lock) {
    int myturn = FetchAndAdd(&lock->ticket);
    while (lock->turn != myturn)
        ; // spin
}

void unlock(lock_t *lock) {
    FetchAndAdd(&lock->turn);
}
```

10/8/2023
CMPU 334 -- Operating Systems
So Much Spinning

• Hardware-based spin locks are **simple** and they work

• In some cases, these solutions can be quite **inefficient**
 • Any time a thread gets caught *spinning*, it **wastes an entire time slice** doing nothing but checking a value

How To Avoid *Spinning*?
We’ll need **OS Support!**
A Simple Approach: Just Yield

- When you are going to spin, **give up the CPU** to another thread
 - OS system call moves the caller from the *running state* to the *ready state*
 - The cost of a **context switch** can be substantial and the *starvation* problem still exists

```c
1 void init() {
2     flag = 0;
3 }
4
5 void lock() {
6     while (TestAndSet(&flag, 1) == 1)
7         yield();    // give up the CPU
8 }
9
10 void unlock() {
11     flag = 0;
12 }
```

Lock with Test-and-set and Yield

10/8/2023

CMPU 334 -- Operating Systems
Using Queues: Sleeping Instead of Spinning

• **Queue** to keep track of which threads are *waiting* to enter the lock

• **park()**
 • Put a calling thread to sleep

• **unpark(threadID)**
 • Wake a particular thread as designated by *threadID*
Using Queues: Sleeping Instead of Spinning

```c
typedef struct __lock_t {
    int flag;
    int guard;
    queue_t *q;
} lock_t;

void lock_init(lock_t *m) {
    m->flag = 0;
    m->guard = 0;
    queue_init(m->q);
}

void lock(lock_t *m) {
    while (TestAndSet(&m->guard, 1) == 1)
        // acquire guard lock by spinning
    if (m->flag == 0) {
        m->flag = 1; // lock is acquired
        m->guard = 0;
    } else {
        queue_add(m->q, gettid());
        m->guard = 0;
        park();
    }
}

void unlock(lock_t *m) {
    while (TestAndSet(&m->guard, 1) == 1)
        // acquire guard lock by spinning
    if (queue_empty(m->q))
        // let go of lock; no one wants it
        m->flag = 0;
    else
        // hold lock (for next thread!
        unpark(queue_remove(m->q));
        m->guard = 0;
}
```

• Potential race condition
 • Thread A holds lock
 • Thread B tries to get lock; fails
 • About to call park; switch B -> A
 • Thread A releases lock; switch A -> B
 • Thread B calls park; no thread will wakeup B!

Lock With Queues, Test-and-set, Yield, And Wakeup
typedef struct __lock_t {
 int flag;
 int guard;
 queue_t *q; }

void lock_init(lock_t *m) {
 m->flag = 0;
 m->guard = 0;
 queue_init(m->q);
}

void lock(lock_t *m) {
 while (TestAndSet(&m->guard, 1) == 1)
 // acquire guard lock by spinning
 if (m->flag == 0) {
 m->flag = 1; // lock is acquired
 m->guard = 0;
 } else {
 queue_add(m->q, gettid());
 setpark() // declare intent to park
 m->guard = 0;
 park();
 }
}

void unlock(lock_t *m) {
 while (TestAndSet(&m->guard, 1) == 1)
 // acquire guard lock by spinning
 if (queue_empty(m->q))
 // let go of lock; no one wants it
 m->flag = 0;
 else
 // hold lock (for next thread!
 unpark(queue_remove(m->q));
 m->guard = 0;
}

• Solaris solves this problem by adding a third system call: setpark()
 • By calling this routine, a thread can indicate it is about to park
 • If the thread happens to be interrupted and the lock is freed before park is actually called, the subsequent park returns immediately instead of sleeping

Lock With Queues, Test-and-set, Yield, And Wakeup
Two-Phase Locks

• A two-phase lock realizes that spinning can be useful if the lock is about to be released
 • First phase
 • The lock spins for a while, hoping that it can acquire the lock
 • If the lock is not acquired during the first spin phase, a second phase is entered,
 • Second phase
 • The caller is put to sleep
 • The caller is only woken up when the lock becomes free later

• Another example of a hybrid approach